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In Unit One of this Mathematics Specialist course we met the idea of proof. 

In particular • we deduced a number of geometrical truths by reasoning from other accepted truths, 
i.e. we used deductive proof,

• we used our understanding of vectors to prove a number of geometrical truths,

• we used proof by contradiction, in which the technique is to assume that the opposite 
of what we are trying to prove is true and then follow correct logical argument only 
to arrive at a contradiction, thus showing that our initial assumption must be wrong.

In this chapter, we will continue our consideration of proof but now our emphasis is not so much on 
proving geometrical truths but instead we concentrate more on proving various truths involving real 
numbers, R. The methods of proof by exhaustion and proof by induction are then particularly useful.

Real numbers are either rational (can be expressed as a fraction) or irrational (cannot be expressed as a 
fraction). To define rational and irrational numbers more formally we would say that rational numbers 

can be expressed in the form 
a
b

 where a and b are integers with b ≠ 0, whilst irrational numbers cannot 

be expressed in this form. Every real number has a decimal equivalent. The decimal equivalents of 
rational numbers are either terminating decimals or recurring decimals.

EXAMPLE 1

Find the following recurring decimals as fractions: a 0.222 222 222 …

 b 0.212 121 212 …

Solution
a Let A = 0.222 222 222 … [1]

 then 10A = 2.222 222 222 … [2]

 [2] – [1] 9A = 2

 Hence A = 
2
9

b Let B = 0.212 121 212 … [3]

 then 100B = 21.212 121 212 … [4]

 [4] – [3] 99A = 21

 Hence A = 
21
99

	 	 = 
7
33

.
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You should also be familiar with the idea that one counterexample can show a general conjecture 
to be false.

Consider, for example, the claim:

All prime numbers
are odd numbers.

Checking some prime numbers:  13 – an odd number 
11 – an odd number 
 7 – an odd number 
23 – an odd number

might lead us to believe the statement to be true but with just one counterexample, the number 2, 
a prime number but not an odd number, we show the general statement to be false.

We might then adjust the statement in the light of the counter example:

All prime numbers over
2 are odd numbers.

In some cases we may be able to prove a general statement to be true.

Consider, for example, the claim:

The sum of two consecutive
positive integers is always

an odd number.

Considering some specific cases:

For the consecutive positive integers 5 and 6: 5 + 6 = 11, an odd number.
For the consecutive positive integers 12 and 13: 12 + 13 = 25, an odd number.
For the consecutive positive integers 21 and 22: 21 + 22 = 43, an odd number.

To prove the statement true we could proceed as follows:

If x is a positive integer then we can represent two consecutive positive integers as x and x + 1.
The sum of these two integers is then x + x + 1 = 2x + 1.
Now with x an integer 2x must be even.
Hence 2x + 1 must be odd and the statement is proved to be true.
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Exercise 12A

For questions 1 to 10 state whether you think the given conjecture is true or false.

If you think it is false, give one example of when it is false.

If you think it is true, give three examples of when it is true, and try to prove it to be true.

 1  2 

 3  4 

 5  6 

 7  8 

 9  10 

If we square any even
counting number greater
than 2 and then subtract
1 we get a multiple of 5.

The cube of any even
integer is always a

multiple of 8.

All multiples of 5 are
also multiples of 10.

All right triangles are
isosceles.

If we add together an
integer squared, six times
the integer and 9 we get

a square number. 

The sum of three
consecutive positive

integers will always be a
multiple of 3.

The product of two even
numbers is always even.

The square of an odd
number is always an

odd number.

The product of two
consecutive even
whole numbers is

always a multiple of 8.

Multiplying any odd
counting number by itself
and then adding 7 always

gives a multiple of 8.



MATHEMATICS SPECIALIST Units 1 & 2246 ISBN 9780170390477

 11 Express each recurring decimal as a fraction.

a 0.555 555 555 …

b 0.75

c 0.636 363 636 …

d 2.231

e 0.231 444 444 …

 12 By assuming that a
b

2 = , a fraction expressed with a and b having no common factors (i.e. fully 

cancelled) and with a and b as integers, b ≠ 0, use the method of proof by contradiction to prove 
that 2 is in fact irrational.

Proof by exhaustion
In this sense the word exhaustion is not used to mean that the proof tires us out and makes us 
exhausted! Instead the use of the word exhaustion means that the proof  ‘exhausts all possibilities’, 
it ‘considers completely all possible options’. For example consider the following claim:

 The square of any integer is always either a multiple of 5
 or 1 more than, or 4 more than, a multiple of 5.

Now the integer to be squared could be

 a multiple of 5 itself. Which we could represent as 5x for integer x.
 1 more than a multiple of 5. Represented by 5x + 1, for integer x.
 2 more than a multiple of 5. Represented by 5x + 2, for integer x.
 3 more than a multiple of 5. Represented by 5x + 3, for integer x.
or 4 more than a multiple of 5. Represented by 5x + 4, for integer x.

These possibilities together exhaust all options. Hence if we can prove the statement true for all these 
options we will have proved the statement true for all integers. Completing this proof is one of the 
questions of the next exercise.

Exercise 12B

Use proof by exhaustion for each of the following.

 1 Prove that:

The square of any integer always has the same parity as the integer.

(The parity of a number refers to it being even or odd.)

 2 Prove that:

The square of any integer is always either a multiple of 5
 or 1 or 4 more than a multiple of 5.

(Hint: See earlier on this page.)
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 3 By considering integers as multiples of 3
 or 1 more than a multiple of 3
 or … ,

prove that:

The cube of any integer is always either a multiple of 9
 or 1 more or 1 less than a multiple of 9.

 4 A family of sequences is defined by the rule

Tn + 1 = 3Tn + 2, where Tn is the nth term.

For example, 

with T1 = 3, T2 = 3(3) + 2  =  11 with T1 = 4, T2 = 3(4) + 2  =  14
 T3 = 3(11) + 2  =  35  T3 = 3(14) + 2  =  44
 T4 = 3(35) + 2  = 107  T4 = 3(44) + 2  = 134

Prove that for sequences in this family, whatever the parity of a particular term is then the next 
term will have the same parity. (The parity of a number refers to it being even or odd.)

 5 Prove that:

For integer x, x > 1, x5 – x is always a multiple of 5.

(See the factorisation on the right for a clue.)

Is it always a multiple of 10?

Is it always a multiple of 20? Justify your answers.

 6 Prove that:

For integer x, x > 1, x7 – x is always a multiple of 7.

(See the factorisation on the right for a clue.)

 7 Noticing that  33 – 3 =  24 
43 – 4 =  60 
53 – 5 = 120

John conjectured (suggested) that

For x any integer greater than 2,  
the expression x3 – x is always divisible by 12.

Is John’s conjecture correct?

If yes, prove it. If no, make a similar conjecture of your 
own involving the divisibility of x3 – x and prove your 
conjecture true.

factor(x5 − x)
x·(x − 1)·(x + 1)·(x2 + 1)

factor(x7 − x)
x·(x − 1)·(x + 1)·(x2 + x + 1)·(x2 − x + 1)
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Proof by induction
Consider the following sums of square numbers:

12 = 1 =  1

12 + 22 = 1 + 4 =  5

12 + 22 + 32 = 1 + 4 + 9 = 14

12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30

12 + 22 + 32 + 42 + 52 = 1 + 4 + 9 + 16 + 25 = 55

12 + 22 + 32 + 42 + 52 + 62 = 1 + 4 + 9 + 16 + 25 + 36 = 91

Verify that for each of the above the following formula is true:

12 + 22 + 32 + … + n2 = 
n
6

(n + 1)(2n + 1)

Consider the following:

1 × 2 = 2 =  2

1 × 2 + 2 × 3 = 2 + 6 =  8

1 × 2 + 2 × 3 + 3 × 4 = 2 + 6 + 12 = 20

1 × 2 + 2 × 3 + 3 × 4  + 4 × 5 = 2 + 6 + 12 + 20 = 40

1 × 2 + 2 × 3 + 3 × 4  + 4 × 5 + 5 × 6 = 2 + 6 + 12 + 20 + 30 = 70

Verify that for each of the above the following formula is true:

1 × 2 + 2 × 3 + 3 × 4 + … + n(n + 1) = 
n
3

(n + 1)(n + 2)
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The previous page involved two rules,

 12 + 22 + 32 + … + n2  = 
n
6

(n + 1)(2n + 1)

and  1 × 2 + 2 × 3 + 3 × 4 + … +  n(n + 1)  = 
n
3

(n + 1)(n + 2).

We could verify the rules to be true for various positive values of n but how would we prove the above 
formulae true for all positive integer values of n?

One suitable method of proof for these situations is proof by induction.

In proof by induction, we follow two steps:

(1) Prove that if the statement is true for some general value of n, say n = k, then it must also be true 
for the next value of n, i.e. n = k + 1.

(2) Prove that there is a value of n, usually n = 1, for which the statement is true.

Question: Why do these two steps form a proof?

Answer:  Step (2) proves that the rule is true for n = 1 but then, by step (1), it must therefore be true 
for n = 2.

But if it is true for n = 2, step (1) means that it must be true for n = 3.

But if it is true for n = 3, step (1) means that it must be true for n = 4.

But if … etc, etc.

Hence the statement must be true for all positive integer n.

Proof by induction is like ‘an infinite ladder’.

If we can prove that •  if any rung exists then the  
next rung must also exist,

and that • at least one rung does exist,

then the infinite ladder must exist.
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EXAMPLE 2

Use the method of proof by induction to prove that

12 + 22 + 32 + … + n2 = 
n
6

 (n + 1)(2n + 1)

for all integer n ≥ 1.

Solution
Let us assume that the rule applies for n = k, i.e.

12 + 22 + 32 + … + k2 = 
k
6

 (k + 1)(2k + 1).

Now consider the situation for n = k + 1, i.e. consider

12 + 22 + 32 + … + k2 + (k + 1)2

It follows that

12 + 22 + 32 + … + k2 + (k + 1)2 = 
k
6

 (k + 1)(2k + 1) + (k + 1)2

 = 
k 1

6
+

 [k(2k + 1) + 6(k + 1)]

 = 
k 1

6
+

 (2k2 + 7k + 6)

 = 
k 1

6
+

 (k + 2)(2k + 3)

Thus 12 + 22 + 32 + … + (k + 1)2 = 
k 1

6
+

 (k + 1 + 1)[2(k + 1) +	1]

i.e. the initial rule applied for n = k + 1.

Hence, if the initial rule is true for n = k, it is also true for n = k + 1.

If n = 1, the rule claims that 12 = 
1
6

 (2)(3)

 = 1 which is true.

Thus: If the initial rule is true for n = k, it is also true for n = k + 1.
And: The rule is true for n = 1.

Hence, by induction,  12 + 22 + 32 + … + n2 = 
n
6

(n + 1)(2n + 1) for all integer n ≥ 1.
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Exercise 12C

 1 Use proof by induction to prove that

1 + 2 + 3 + 4 … n = 
1
2

 n(n + 1)

for all integer n ≥ 1.

 2 Prove, by induction, that

1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + … + n(n + 1) = 
n
3

 (n + 1)(n + 2)

for all integer n ≥ 1.

 3 Prove, by induction, that

2 + 4 + 8 + 16 + 32 + … + 2n = 2n + 1 – 2

for all integer n ≥ 1.

 4 Use proof by induction to prove that

13 + 23 + 33 + 43 + 53 + … + n3 = 
n
4

2

(n + 1)2

for all integer n ≥ 1.

 5 a Verify that the statements

 1 + 3 =   4

 1 + 3 + 5 =   9

 1 + 3 + 5 + 7 =  16

 1 + 3 + 5 + 7 + 9 =  25
are consistent with the rule
 1 + 3 + 5 + 7 + … + (2n – 1) =  n2.

b Use the method of proof by induction to prove the above rule to be true for all integer n ≥ 1.

 6 Use proof by induction to prove that

1
2

1
2

1
2

1
2

1
2

…
1
2

2 1
2n

n

n2 3 4 5+ + + + + + = −

for all integer n ≥ 1.

 7 Use proof by induction to prove that

n n
n

n
1

1 2
1

2 3
1

3 4
1

4 5
1

5 6
…

1
( 1) 1×

+
×

+
×

+
×

+
×

+ +
+

=
+

for all integer n ≥ 1.
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 8 Prove, by induction, that

1 × 3 × 5 + 2 × 4 × 6 + … + n(n + 2)(n + 4) = 
n
4

 (n + 1)(n + 4)(n + 5)

for all integer n ≥ 1.

 9 Use proof by induction to prove that 

(x – 1) is a factor of xn – 1 

for all positive integer values of n.

 10 Use proof by induction to prove that

1 × 2 × 3 × 4 × 5 × 6 … × n ≥ 3n

for all integer values of n > 6.

 11 Use the method of proof by induction to prove that

7n + 2 × 13n is a multiple of three

for all n ≥ 0.

 12 Prove, by induction, that

2 – 4 + 8 – 16 + 32 … (–1)n + 1 2n = 
2
3

[1 + (–1)n + 12n]

for all integer n ≥ 1.

Note

Many questions in the previous exercise involved expressions like 

1 + 2 + 3 + 4 + 5 + …
1 + 3 + 5 + 7 + 9 + …

13 + 23 + 33 + 43 + 53 + …

A shorthand way of writing 1 + 2 + 3 + 4 + 5 + 6 + 7 is i
i 1

7

∑
=

This is read as ‘sum all the i values starting from i = 1 and finishing at i = 7’, (where i takes 
integer values).

Using this, summation notation, question 4, for example, could be written:

Prove, by induction, that i
i

n
3

1
∑
=

 = 
n

n
4

( 1)
2

+ 2
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RESEARCH

Extension activity: Investigating some conjectures
Do you understand the difference between a conjecture and a theorem?

If, based on our opinion or perhaps some observations or maybe some research, we think 
something to be true we might make a conjecture suggesting it as a truth. A conjecture could 
be our ‘best guess’ at what seems to be the case. It may be based on incomplete information and 
has not been proven. Such a conjecture may later be proved to be true, in which case it would 
then become a theorem. On the other hand, perhaps someone, or some event, may prove the 
conjecture to be false.

You may convince others into believing your conjecture is true even though no proof is 
forthcoming. Just because a conjecture has not been proven true it may also not have been 
proven false and may be considered by all to be a truth, even though unproven. A theorem 
on the other hand is a statement that has been proved to be true, often by reasoning from 
other known truths. 

Investigate each of the following famous conjectures. What does each conjecture claim?  
Give some examples of what it is claiming to be the case. What is the history of the 
conjecture? Who made the conjecture? When? Where? Has it since been proven to 
be true, or perhaps false? Etc. 

Write a report about each conjecture.

Goldbach’s conjecture

The twin prime conjecture

Fermat’s conjecture

The four-colour conjecture
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Miscellaneous exercise twelve
This miscellaneous exercise may include questions involving the work of this chapter, the 
work of any previous chapters, and the ideas mentioned in the Preliminary work section at 
the beginning of the book.

 1 If A = 3
1









 , B = −









1 2
1 4

 , C = −
− −











1 1 1
1 1 1

 , and D = 2 1 0
1 1 1









 , determine each of the 

following. If any cannot be determined, state this clearly.

a AB b BA c BC d CD e BD

 2 If A = 
−











2 3
1 1

 , determine matrices B, C, D and E given that

AB = 
−











13
4

 , AC = 










13
6

 , DA = 6 19



  and EA = 5 0



 .

 3 If A = 
−











2 3
1 4

 , B = 4 21
9 17









 and AC = B, find C.

 4 In the first copy of a new magazine for ‘would-be stamp collectors’, an invitation is made to 
each purchaser of the magazine to complete a six-month subscription order and receive a bonus 
‘free starter pack’. Two types of pack are available with the contents of each as shown below.

Number of 
Australian  

stamps

Number of  
Rest of the world 

stamps
Each Mainly Australian starter pack: 75 25
Each Rest of the World starter pack: 20 80

We will call this matrix X.

The offer prompts 210 requests for the Mainly Australian starter pack and 120 requests for the 
Rest of the World starter pack.

We could write this as a column matrix, Y: 210
120











or as a row matrix, Z: 210 120





a Which of the following matrix products could be formed:

XY, YX, XZ, ZX?

b Of those matrix products in a that can be formed, which 
will contain information that is likely to be of use?

c Determine the useful products from b and explain the information displayed.
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 5 Given that A = x 1
0 3









 and A2 + A = 

x
p q
6 82 −










 determine p, q and x.

 6 Prove that sin 2θ = 2tan
tan 1

.2
θ

θ +

 7 Prove that sin 5x cos 3x – cos 6x sin 2x = sin 3x cos x.

 8 a Express (5 cos θ – 3 sin θ) in the form R cos (θ + α) for α an acute angle in radians and correct 
to two decimal places.

b Hence determine the minimum value of (5 cos θ – 3 sin θ) and the smallest positive value 
of θ (in radians and correct to two decimal places) for which it occurs.

 9 The matrices A, B and C shown below can be multiplied together to form a single matrix if 
A, B and C are placed in an appropriate order. What is the order and what is the single matrix 
this order produces?

A = 
3
1
4
















 , B = 

−










2 0 1
1 3 2

 , C = 1 0 1 1



 .

 10 If A = 
x x

y
2
4












 and A2 = 

p

q

24

0
,













 find all possible values of x, y, p and q.

 11 If AB = AC, A ≠ O, then matrix B does not necessarily equal matrix C, as the following examples show:

Example 1:   A = 1 3



 ,   B = 

−










1 2
2 2

 ,   C = −









4 4
1 0

 .

AB = 1 3



 −











1 2
2 2

 = 7 4−



 AC = 1 3





−









4 4
1 0

 = 7 4−





Thus AB = AC, A ≠ O, but B ≠ C.

Example 2:   A = 4 6
2 3









 ,   B = −









2 1
1 2

 ,   C = −









1 2
3 0

 .

AB = 4 6
2 3











−









2 1
1 2

 = 










14 8
7 4

 AC = 4 6
2 3











−









1 2
3 0

 = 










14 8
7 4

Thus AB = AC, A ≠ O, but B ≠ C.

Do the examples above conflict with the following proof that if AB = AC then B = C?

If AB = AC
then A–1AB = A–1AC
 IB = IC
and so B = C
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 12 BC is just one product that can be formed using two matrices selected from the four below.  
List all the other products that could be formed in this way. (The selection of the two matrices can 
involve the same matrix being selected twice.)

A = 1 2 1
2 2 0









 , B = 2 3 1−



 , C = 

1
0
1
















 , D = 

−

















0 1 0
3 0 1
2 1 1

.

 13 Triangle ABC has vertices A(2, 0), B(2, 3) and C(4, 3). Find the coordinates of the vertices of 

triangle A′B′C′, the image of ABC when transformed using the transformation matrix 1 3
0 1









 .

Show both nABC and nA′B′C′ on grid paper.

What is the transformation this matrix represents?

 14 Prove that

sec x cosec x cot x = 1 + cot2 x.

 15 Find all solutions to the equation

7 sin x + cos x = 5

rounding answers to two decimal places when rounding is appropriate.

 16 Prove, by induction, that

12 + 19 + 31 + 53 + … + [5(1 + 2n – 1) + 2n] = n(n + 6) + 5(2n – 1)

for all integer n ≥ 1.

 17 Prove by induction that

32n + 4 – 22n is divisible by 5

for all positive integer n.

 18 Prove that

5n + 7 × 13n is a multiple of 8

for all integer n ≥ 1.

 19 Prove, by induction, that for r ≠ 1 and all integer n ≥ 1,

r + r2 + r3 + r4 + … + rn = 
r r

r
( 1)

1

n −
−

.
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